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Abstract 

In order to calculate electron density maps from fiber 
diffraction patterns, the terms which superimpose 
because of cylindrical averaging of the pattern must be 
separated and their phases determined. This can be 
done using a technique analogous to the isomorphous 
replacement method of protein crystallography, but 
large numbers of heavy-atom derivatives are required. 
Because of the cylindrical averaging, the number of 
derivatives increases with increasing resolution. This 
paper describes a method for measuring the fine 
splitting of layer lines which occurs when a helical 
structure repeats approximately, but not exactly, in a 
given number of turns, and for using this as a source of 
phase information. The amount of phase information 
obtainable from each heavy-atom derivative is 
theoretically doubled since differences in both layer-line 
intensity and apparent layer-line position can be used, 
and this substantially increases the resolution attain- 
able with a limited number of derivatives. The method 
is used to calculate an electron density map of tobacco 
mosaic virus at 6.7 A resolution using only two 
derivatives instead of the four which would have been 
required using previously available methods. 

Introduction 

Structure determination using fiber diffraction is com- 
plicated by the fact that fiber diffraction data are 
cylindrically averaged. This is because the particles 
(such as rod-shaped viruses or helical nucleic acid 
molecules) that make up a fiber diffraction specimen 
are randomly oriented about their long axes. Model 
building, that is, the construction of models and the 
refinement of their parameters against the observed 
data, has been an effective way of determining 
structures such as nucleic acids and polysaccharides, 
but the great complexity of the macromolecular 
subunits in such sytems as helical viruses and rod- 
shaped intraceUular assemblies limits the value of this 
approach. Stubbs & Diamond (1975) showed that the 
information lost by cylindrical averaging can be 
recovered by a technique analogous to the iso- 
morphous replacement method of protein crystal- 
lography, but this method requires the preparation of a 
large number of heavy-atom derivatives. For example, 
to solve the structure of tobacco mosaic virus (TMV) at 
a resolution of 4 A, six derivatives were required 
(Stubbs, Warren & Holmes, 1977). The number of 
derivatives increases with resolution, and at 3 A 
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418 THE PHASING OF FIBER DIFFRACTION DATA 

resolution eight or more would be needed. These 
requirements for large numbers of heavy-atom 
derivatives limit the resolution to which isomorphous 
replacement can be used in the analysis of fiber 
diffraction data. 

Diffraction from particles periodic in one dimension 
is limited to discrete layer planes in reciprocal space, 
which give rise to the observed layer lines (see Fig. 1 
for an example). The spacing of the layer lines is 
reciprocal to the axial repeat distance of the particles in 
the specimen. Intensity on a layer line is made up of 
Bessel function terms, each of which is related to a 
cylindrical harmonic of the scattering particle. The 
contribution to the observed intensity from each Bessel 
function term must be determined in order to obtain the 
structure of the scattering units. 

In many cases, the Bessel function terms con- 
tributing to a layer line do not fall at exactly the same 
distance from the equator; that is, the intensity on the 
layer line is split (Franklin & Klug, 1955). This occurs 
when the apparent repeat distance of the scattering 
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particles (reflected in the layer-line spacing) corres- 
ponds only to an approximate repeat, the exact repeat 
distance being much longer. The degree of splitting is 
determined by the degree of deviation from an exact 
repeat, or, equivalently, by the length of the exact axial 
repeat. This splitting, if it can be measured, provides an 
opportunity for separating the contributions from 
Bessel functions superimposed on a layer line. In 
practice, splitting as such is not directly observed, 
because imperfect orientation of the particles in the 
specimen causes the diffracted intensity to be spread 
along Debye-Scherrer arcs. The effect of layer-line 
splitting, when the degree of splitting is small compared 
to the magnitude of the disorientation, is to cause shifts 
in the apparent position of the layer line which depend 
on the relative magnitudes of the contributing Bessel- 
function terms. Fig. 1 shows this effect in TMV. 
Preliminary studies (Makowski, 1980) have shown that 
these apparent shifts in layer-line positions can be 
measured by an elaboration of angular deconvolution 
(Makowski, 1978) and used to determine the con- 
tributions from two Bessel-function terms super- 
imposed on a layer line. 
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Fig. I. (a) Diffraction pattern from tobacco mosaic virus, taken in an evacuated Guinier focusing camera using a point-focused beam from 
two bent quartz monochromators. (b) Contour map of the optical density in the part of (a) inside the box. The straight lines indicate the 
positions of layer lines 1 and 2 based on their positions near the meridian. It is evident that several of the intensity peaks are significantly 
off these lines. (c) Positions of the (n,/) terms of the TMV diffraction pattern, predicted on the basis of 49 + x subunits in three 
turns. An exaggerated value o f x  = 0.1 has been used for clarity in the drawing. In reality, the terms on a given layer line are much closer 
together than this. I For TMV as shown in (a), x = 0.019.1 In the left and lower right quadrants, dots indicate values of n and their cor- 
responding/,,, Ithe (n,l) plotl. The upper right quadrant indicates the actual terms in the pattern, obtained by imposing mm symmetry on 
the (n, 1) plot and replacing the dots with lines representing Bessel-function terms. These include high-order terms which were not included 
in the analysis in this paper. These terms come only from the outer part of the TMV particle at this resolution, and make only a small 
contribution to the intensity. This figure is similar to Fig. l(b) of Franklin & Klug (1955). 
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In this paper we show that it is possible to measure 
the small differences in layer-line shifts between native 
TMV and heavy-atom derivatives, and that these 
differences provide independent information which can 
be used in structure determination. Isomorphous 
replacement and layer-line splitting are combined to 
determine the structure of TMV at 6-7 A resolution 
using only two heavy-atom derivatives, rather than the 
four which would have been required using previously 
available methods. 

Theory 

1. Diffraction f rom helical structures 

In diffraction from helical structures, electron den- 
sity (p) is usually calculated in cylindrical coordinates 
r, tp and z. It is obtained from a set of complex 
Fourier-Bessel structure factors G by the relationships 
(Klug, Crick & Wyckoff, 1958) 

1 Go GO [ ( n  2~lz)] 
p(r , {o ,z )=-  Z ~ gn, t(r) exp i (p - - (1) 

C 
l=- -Go n = - - o o  

and 

GO 

g.,t(r) = f G. , l (R)Jn(Engr)2nRdR,  (2) 
0 

where R is reciprocal-space radius, l is the layer-line 
number, c is the repeat distance along the helix axis, 
and n is the order of the Bessel function J , .  The 
contribution to the electron density from each term 
g.,t(r) in (1) is the projection of the electron density 
along a helix of pitch nc/l. 

In the diffracting systems being considered here, the 
particles, although nearly parallel, are randomly orien- 
ted about their helical axes, so the diffracted intensity is 
cylindrically averaged in reciprocal space. Under these 
conditions, Waser (1955) and Franklin & Klug (1955) 
showed that the observed intensity I is 

I(R,I) = Y G n , t (R)G* , t (R) .  (3) 
n 

term falls at l,,, = 1.019. The G terms do not interfere 
with each other whether or not they fall exactly on the 
layer line, so (3) still holds. 

2. Isomorphous replacement 

To calculate an electron density map using (1) and 
(2), it is necessary to determine the real and imaginary 
parts of each G term contributing to the intensity in (3). 
In practice, the selection rule and the fact that Bessel 
functions have insignificant values until the argument 
approximates the order ensure that there will be a small 
number of terms in (3), the number increasing with the 
resolution of the intensity data. These terms may be 
separated using data from isomorphous heavy-atom 
derivatives (Stubbs & Diamond, 1975). 

If A j, i represents a real or imaginary contribution to 
G j, where j indicates a particular data set, (3) may be 
rewritten for the native structure: 

I o = ~. A 2 (4) 0, i" 
i 

The subscript 0 denotes the native. If, in heavy-atom 
derivative j, the heavy-atom contribution at the 
reciprocal-space point under consideration is a j, i then 
the derivative intensity Ij is 

I j=  Z (Ao, i + aj, i) 2. (5) 
i 

We combine (4) and (5) to obtain a linear equation in 
the unknowns {A0,i}: 

= (Ij -- a 2..). (6) Z aj,iAo, t ½" - I o  Z .t,, 
i 

Stubbs & Diamond (1975) showed how a set of linear 
equations such as (6), one from each heavy-atom 
derivative, could be solved, subject to (4) as a 
constraint, to obtain the parts of {G} necessary to 
calculate an electron density map. Two derivatives are 
needed for each G term. 

If the diffracting helical structure has u identical 
subunits in t turns of the helix, where u and t are 
integers, the terms contributing to the sums in (1) and 
(3) are restricted to values of n and l which satisfy the 
selection rule 

l = tn + um, 

where m is integral (Cochran, Crick & Vand, 1952). If 
there is an almost, but not exactly, integral number of 
subunits u + x(Ixl  ,~ 1) in t turns, layer line I will be 
split, with the (n, l) term falling at lm= l + xm rather 
than exactly on l. For example, TMV (Fig. 1) has 
49.019 subunits in three turns (see below). The G-16.1 

3. Layer-line splitting 

Further information about the relative sizes of the G 
terms and their phases is available from the splitting of 
the layer lines caused by the non-integral number of 
subunits in the approximate helical repeat distance. 
This information may be combined with isomorphous 
replacement information in the following way. 

Because of specimen disorientation, the various G 
terms contributing to a layer line will overlap, even 
when the layer line is split. For example, in TMV on 
layer line 1 at R = 0 . 2 A  1, there are three terms, 
falling at layer line positions corresponding to l m = 
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1.02, 0.96 and 1.08. Adjacent terms are separated 
along the Debye-Scherrer arc by 0.25°. However, the 
disorientation in a TMV specimen is over 1 °, so only a 
single peak is observed. If the splitting is much smaller 
than the disorientation, as is the case in TMV, the 
angular profile of the layer line will still be approxi- 
mately Gaussian. The position of the center of this 
Gaussian will depend on the relative contributions of 
the G terms. If the fractional contribution from A 2 is 0, i 
h i (that is, h i = A2,i/Io), the arc will appear to be a 
Gaussian with its center displaced from the expected 
position by an angle q~, where 

= ~ ~Pi hi. (7) 

~Pt is the difference between the angular position of the 
center of the arc from Gi, and the angular position ~pt 
that the layer line would have if there were no splitting. 
Multiplying (7) by I 0, we obtain for the native 

*o Io = Z (8) 
i 

This is a parallel equation to (4).* 
The observed layer-line position for derivative j, q0:, 

will in general not be equal to the observed layer-line 
position in the native, #0. The small differences 
between q00 and q0j (see Fig. 2 for an example) can be 

* We assume, both here and in (4), that A (R, I) does not change 
significantly with the change in R along the arc from one G to 
another: that is, that all terms in (4) and (8) refer to the same R. 
Because disorientation spreads data out along arcs centered at the 
origin, on a layer line with two Bessel-function terms, the 
contribution at R from the term closer to the equator  will overlap 
the intensity due to the second term at R - d R ,  slightly closer to the 
meridian. AR ~_ ( xm/c )  tan ¢Pt. This is extremely small except near 
the meridian where ~Pt -" 90°.  However,  near the meridian only one 
Bessel-function term contributes. Thus the effect is unimportant.  
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Fig. 2. Plots of  intensity (I)  and angular position (~)  on layer line 1 
as functions of  reciprocal-space radius R. Solid lines: TMV. 
Broken lines: T M V - M M N .  Dotted lines: N i - 2 0 6 8 - M M N .  

used as a further, independent source of phase 
information. We can write, parallel to (5) and (8), 

¢Ikj I j  = ~.  (Di(Ao, i + a j , i )  2 (9 )  
i 

and, parallel to (6), 

(o ~ . ¢ P i a j ,  i A o ,  i ½ j l j - - ~ o l  o ~.  . ( 1 0 )  
i i 

These relationships assumed that the helical sym- 
metry of the heavy-atom derivatives is exactly the same 
as the native helical symmetry. However, in TMV, an 
increase in the azimuthal separation of adjacent 
subunits of as little as 0.01 A at the outside of the 
particle would double the observed splitting. Thus it is 
reasonable to assume, and observations have con- 
firmed, that some changes in layer-line splitting will be 
observed among the derivatives. Setting the ratio of the 
degree of splitting in the j th derivative to that in the 
native equal to qj, the position of the term G i in the 
derivative will be equal to qj ~o i. Then (9) becomes 

q~j l j=  Z qj~oi(Ao, i + aj,i)  2 (11) 
i 

and (10) becomes 

= (t/~j -- a2..) (12) (Piaj.iAo, t ½ I j - -  ~o lo  ~'i ~°i J'' " 
i \ q j  " 

Equation (12) represents a set of linear equations which 
can be combined with (6) in the calculation of phases. 
Furthermore, (8) is an independent source of phase 
information. Thus, if we have a native and n heavy- 
atom derivatives, of which m are sufficiently well 
oriented to give accurate measurements of splitting, we 
have at our disposal n + m independent linear 
equations [n in the form of (6) and m in the form of 
(12)], and two quadratic equations [(4) and (8)]. The 
use of these equations will be discussed in the next 
section. 

4. Angu lar  deconvolut ion 

In order to use the theory given above to separate 
Bessel-function terms, it is necessary to measure both 
intensities and layer-line positions very accurately. This 
is done using a numerical deconvolution procedure 
(Makowski, 1978). The form of the optical density, 
D(r,  ~p), in a fiber diffraction pattern can be expressed as 
a sum of contributions from the intensity on each layer 
line l contributing at that radius, It(r,  tpt), plus the 
background, B(r,  tp): 

D(r,~o)= y l l (r ,  tp,) f ( ~ o -  (o,) + B(r,q~), (13) 
l 

where r is the distance from the center of the diffraction 
pattern and ~ is the angle about the center of the 
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diffraction pattern measured from the equator. The 
angular intensity distribution function, f(q~ - ~0t), 
describes the spreading out of the intensity as a 
function of angle ~. This angular smearing causes a 
reflection centered at (r, ~0 t) to contribute to the optical 
density at (r, ~0). For a Gaussian distribution of particle 
orientations, Holmes & Barrington Leigh (1974) 
showed that the angular intensity distribution function 
was approximately a Gaussian, and this is an adequate 
assumption for the data analyzed here. The back- 
ground can usually be expressed as a sum of one or a 
few simple analytical functions of angle; for instance, 
the background can be expanded as a sum of 
orthogonal functions such as a Fourier series. One to 
three background terms have usually been utilized, the 
first term always being a circularly symmetric 
component. 

With these assumptions, (13) becomes 

?/a 

D(r,¢) = ~ Ii(r, tpt) e x p [ - ( ¢  - ~ot)2/2e 2] 
t = l  

nb 

+ • Bk(r)bk(¢), (14) 
k = l  

where e is the standard deviation of the disorientation 
of particles in the specimen and the b~(¢) are the 
analytical functions of the background expansion. The 
It(r, ~ot) and the Bk(r) are the unknowns to be solved for 
at each radius r, where there are n a unknown intensities 
and n b unknown background parameters. The inten- 
sities, It(r,~ot), are equal to the background-subtracted 
optical densities at the centers of the layer lines. 

Assuming that all the positions (r, ¢t) are known for 
all layer lines contributing at a radius r, the intensities 
and background parameters can be determined by 
measuring D(r,~o) at a number of positions ~0, and 
solving the set of equations (14). However, when 
layer-line splitting is present, the observed angular 
positions, ¢,  of a layer line need not correspond to the 
expected value ¢t. On a layer line where splitting is 
present, the Bessel-function terms are not exactly 
superimposed, and the apparent position of the center 
of the layer line will depend on the relative intensities of 
the Bessel-function terms as given in (7). Accordingly, 
angular deconvolution was carried out to determine 
both the layer-line intensities, It(r, q~t) and the angular 
positions, ¢,  as follows: Since the ¢t are known 
approximately, the linear equations (14) were solved 
assuming no layer-line splitting. Then, for each reflec- 
tion, a limited, one-dimensional search was made for a 
position which better fit the measured intensities. The 
angular standard deviations, e, were also allowed to 
vary since splitting leads to an apparent increase in the 
measured angular widths of the layer lines. Once a new 
set of positions and widths was determined, the set of 
linear equations was solved a second time. The cycle 
was repeated, if necessary, until no substantial changes 

were found in I or ~. At the resolution of this work, 
one cycle was usually adequate, but at 4 A resolution 
and beyond, up to three cycles have been required. 

We note that in principle cr could be used as a source 
of phase information. However, the variation in e is 
smaller and is less directly related to the relative 
strength of the Bessel-function terms. 

Methods 

The major steps in the analysis of diffraction patterns 
included determination of intensities and layer-line 
positions by angular deconvolution, determination of 
the splitting parameters Ct for all Bessel-function terms 
and q~ for all derivatives, and application of the phase 
equations (4), (6), (8) and (12). 

1. Determination of  intensities and positions 

The data analyzed in the Results section were 
collected on cylindrical films with a Guinier camera, of 
diameter 11.2 cm (Holmes, Stubbs, Mandelkow & 
Gallwitz, 1975). The films were measured with an 
Optronics Photoscan densitometer, using a 50 lam 
raster. The resulting computer images were used to 
obtain images in polar coordinates, having a radial grid 
spacing of 50 lam and an azimuthal spacing of 1 o. For 
computational convenience, these were projected onto 
positions on a fiat film by a simple geometric 
transformation (Fraser, Macrae, Miller & Rowlands, 
1976). Angular deconvolution then provided the 
required intensities and layer-line positions. The inten- 
sities were corrected for non-linearity of film response, 
polarization and geometric effects. 

2. Determination of  splitting parameters 

In order to use (8) and (12) in the solution of the 
phase problem, the parameters ¢t and qj must be 
evaluated, qj is simply the ratio of ~0 t for a derivative to 
~0 t for the native. ~0 t, the angular distance of a 
Bessel-order term from the predicted position of the 
unsplit layer line, is related to x, where there are u + x 
subunits in t terms, by the equation 

~o i = xm/Re .  

Where only one Bessel order contributes to the 
diffraction pattern, for example layer lines 1 and 2 for 
R < 0.06 A -1, ¢1 = ~, the observed angular dis- 
placement. In these cases, x (calculated from ~P) was 
plotted as a function of R, and an average value of x 
was determined from the region where x was observed 
to be a constant. Fig. 3 shows these plots for native 
TMV. In this case, the observed layer lines are at lob s = 
1.019 and lob s = 1.981. Thus, x = 0.019. It should be 
noted that although x varies between the native and 
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Table 1. Number of  subunits in three turns of  the helix 
(u + x, where u = 49) and ratio (q) of  x to the value 
of  x found for native TMV, for the various heavy-atom 
derivatives o f  TMV used by Stubbs, Warren & 

Holmes (1977) 

Derivative u + x q 

Native 49.019 (1.0) 
TMV-MMN 49.024 1.3 
Ni-2068-MMN 49.022 1.2 
TMV-Os 49.022 1.2 
TMV-SHIMS-MMN 49.033 I. 7 
TMV-Pb 49.022 1.2 
TMV-UF 49.019 1.0 

derivatives (that is, qi 4: 1.0), the variation is not 
sufficient to indicate serious non-isomorphism. The 
largest value of q which we have observed, 1.7 (see 
Table 1), represents a change in the azimuthal 
separation of adjacent subunits at the outside of the 
particle of only 0.01 A. 

This method allows very precise determination of the 
splitting parameters, particularly if, as was usually the 
case in this work, q~ as a function of R is first smoothed 

Layer line 1 

0.1 

f . 0 - 2  . . . . . , . .  . . . . . .  . '" , , . ° . . . ' .  . . . .  
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......." , i R x -0.2 "'"'" 

(b) 
Fig. 3. Plots of  intensity (I) and x (calculated from q~) as functions 

of reciprocal-space radius R. The calculation of x is only valid at 
low values of R, for which only one Bessel-function term 
contributes to the intensity. For these values, x is seen to be 
approximately constant. There are 49 + x subunits in three turns 
of TMV. Units o f / a r e  arbitrary. Units of  R are A-k  

by eliminating high-frequency variations. Agreement 
between values determined from different layer lines 
has always been excellent up to at least layer line 5. 
Table 1 gives helical parameters and values of q for all 
the derivatives used by Stubbs, Warren & Holmes 
(1977). 

Note on smoothing: Since no squared Bessel-function 
term can fluctuate with a frequency higher than 2a, 
where a is the radius of the TMV particle, q~I, which is 
a linear combination of such terms [equation (8)], can 
have no higher-frequency components than this. There- 
fore, when required, smoothing was applied by comput- 
ing the one-dimensional Fourier transform of cbI(R), 
omitting the high-frequency terms and back-trans- 
forming before dividing by I(R). The high-frequency 
cut was applied at the first node in the transform after 
2a. 

3. Determination of  phases and Bessel-order 
separation 

With data sets from a native and sufficient heavy- 
atom derivatives, known splitting parameters and 
known heavy-atom positions (see Stubbs, Warren & 
Holmes (1977) for references on locating heavy atoms), 
it is possible to use equations (4), (6), (8) and (12) to 
determine the real and imaginary parts of all the G 
terms contributing to a point (R, l). The procedure used 
in this work was to use the linear equations (6) and (12) 
to obtain a preliminary solution by a linear least- 
squares procedure, and to take this solution as a 
starting point for a non-linear least-squares procedure 
which included (4) and (8). 

The relative weighting of the equations is an 
important consideration, since they involve parameters 
of dramatically different magnitudes. We used weights 
based on the expected errors in the equations in the 
usual way (Topping, 1955); but rather than attempt a 
detailed error analysis (which would be complicated by 
the difficulty of estimating errors in the non-linear 
angular deconvolution), we made rough estimates for 
each type of equation. For example, if the error ~10 in 
(4) is normalized to 1, we estimate the error in (8) from 
the formula e = (I0 ~ ez o + q~0 z ci~) ~/2 (Topping, 1955) 
to be typically 0.001. Similar formulae give for (6) e ~_ 
1, and for (12) e = 0.001. We have found that varying 
these estimates by a factor of two in either direction has 
no significant effect on our electron density maps. 

Layer-line splitting is of no value in determining 
phases on the equator, since for every Bessel-function 
term G, present with an expected position of ~0, G n is 
present at -q~, so q~ = 0. However, the simple 
relationships between Gn and G ,  reduce the number of 
unknowns on the equator by almost half, so iso- 
morphous replacement alone provides adequate phase 
information. 



Results 

(a) 

The methods outlined above were applied to the 
solution of the structure of TMV at 6.7,4, resolution 
using two heavy-atom derivatives. This solution was 
compared with the solution at the same resolution using 
isomorphous replacement alone, with six derivatives. 

The two derivatives of TMV used were the derivative 
with methyl mercury nitrate (MMN) and the derivative 
of the Ni-2068 strain with MMN described by Stubbs, 
Warren & Holmes (1977). The films of Stubbs, Warren 
& Holmes were densitometered and processed by 
angular deconvolution as described under Methods. 
Intensity data and smoothed splitting data for a typical 
region of layer line 1 are shown in Fig. 2. Values of q 
were determined using smoothed splitting data from 
layer lines 1, 2, 4 and 5, and found to be 1.3 for 
TMV-MMN and 1.2 for Ni-2068-MMN (Table 1). 

It was assumed that only two Bessel orders were 
present in the diffraction pattern at this resolution. This 
is the assumption made by Holmes, Stubbs, Man- 
delkow & Gallwitz (1975) in their 6.7/~ resolution 
isomorphous-replacement map of TMV. From the 
smoothed data and with the methods described above, 
Bessel orders were separated, phases determined and 
an electron density map calculated. (It is of interest to 
note that a map calculated using unsmoothed splitting 
data is very similar to this map.) 

The principal features of the TMV protein structure 
are four approximately radial a-helices, called the left 
and right radial and the left and right slewed helices by 
Champness, Bloomer, Bricogne, Butler & Klug (1976). 
These features, as well as the RNA, are quite clear in 
our map, part of which is shown in Fig. 4(a). The 
sections in this figure have been chosen so that the left 
radial a-helix falls in the plane of the figure. Part of the 
right radial helix and two bases of the RNA are also 
visible. For comparison, Fig. 4(b) shows the same 
region of a map calculated using isomorphous replace- 
ment alone, with the data of Stubbs, Warren & Holmes 
truncated at 6.7,4, resolution. This map used six 
derivatives, but it is not significantly better than the 
two-derivative map in Fig. 4(a). In both maps the left 
radial helix is quite distinct and density corresponding 
to the two bases and the outer portion of the right 
radial helix can be identified. Where the two maps 
disagree, comparison with the higher-resolution (4 A) 
map of Stubbs, Warren & Holmes (1977) does not 
favour one map or the other. 

Without using the splitting data, two derivatives 
cannot be used to separate uniquely the contributing 
Bessel function terms. However, we must show that our 
map is better than maps obtained using other methods 
for treating two-derivative data. 

There are two obvious approaches: We could 
truncate the data at a resolution where only one Bessel 
order contributes significantly to each layer line, or we 
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(b) 

(e) 

(a) 

Fig. 4. Five superimposed sections, 1.4/~, apart, through part of 
the electron density map of TMV calculated in various ways. (a) 
Using layer-line splitting and isomorphous replacement with data 
from two derivatives. (b) Using isomorphous replacement alone 
from six derivatives. (c) Using isomorphous replacement alone 
from two derivatives; data truncated at 10A resolution. (d) 
Using isomorphous replacement data from two derivatives, and 
the arbitrary assumption that diffracted intensity is equally 
divided between the contributing Bessel-function terms. In (a), 
heavy outlines indicate the positions of the left radial a-helix 
(LR), part of the right radial helix (RR) and two RNA bases (B). 
Parts of three adjacent subunits are visible. 
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could make some arbitrary assumption about the 
relative intensities of the Bessel orders. The first 
approach is illustrated in Fig. 4(c), which was construc- 
ted using data truncated at 10 A resolution. The one 
Bessel-function term contributing to each layer line was 
phased using the two derivatives. This is comparable to 
the procedure used by Barrett et al. (1971), and the 
map is similar to theirs. It is recognizably related to the 
higher-resolution maps, especially near the center of the 
virus, but it is clearly at a lower resolution. Arbitrary 
assumptions about the relative intensities of Bessel- 
function terms can be made in a variety of ways; for 
example we can choose to distribute the intensity 
randomly between two Bessel orders, assign all the 
intensity to the lower order, or divide the intensity 
equally between two Bessel orders (assigning all the 
intensity to one order at resolutions where the second 
order does not contribute). Equal division of the 
intensity between contributing Bessel function terms 
gave the best map of this type, which is shown in Fig. 
4(d). However, although it shows considerable detail, 
the detail does not correspond to the known structure, 
and the map is actually inferior even to the 10 A map. 

The four maps are compared again in Fig. 5. In this 
figure, four sections perpendicular to the axis of the 
virus particle are superimposed to give a 4.2 A thick 
section through two adjacent subunits at the level of the 
RNA. Parts of the RNA, the left and right radial 
helices and the 'hydrophobic girdle' [the concentration 
of aromatic groups at high radius identified by 
Bloomer, Champness, Bricogne, Staden & Klug 
(1978)] are clearly visible in the two-derivative splitting 
map (Fig. 5a) and the six-derivative isomorphous 
replacement map (Fig. 5b). The resolution of the 10 A 
map (Fig. 5e) is too low to allow protein secondary 
structure units to be recognized, while the details of the 
map calculated by equal division of intensity (Fig. 5d) 
once again do not correspond to the known structure. 

Conclusion 

The structure of tobacco mosaic virus was first solved 
at 6 . 7A  by Holmes et al. (1975) using multi- 
dimensional isomorphous replacement. That work 
required a minimum of four heavy-atom derivatives, 

0 IOA 

RNA ~ HG 

(a) 

© 

(b) 

(c) (d) 

Fig. 5. Four superimposed sections, 1.4 A apart, through part of the electron density map of TMV calculated in various ways. The methods 
of calculation used in (a) to (d) correspond to those in Fig. 4. Parts of the RNA and the 'hydrophobic girdle' (HG) are indicated in (a), 
as well as the left and right radial a-helices (open boxes). 
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and in fact used five. By utilizing the fine splitting of 
layer lines due to the imperfect repeat of the TMV helix 
(Makowski, 1980) and the small differences in splitting 
among the derivatives, we have solved the same 
structure using only two derivatives, obtaining an 
electron density map of comparable quality. 

Structures other than TMV often have more Bessel 
orders contributing to a layer line at a given resolution, 
and use must be made of all available information to 
solve their structures. Preparation of heavy-atom 
derivatives for use in fiber diffraction is difficult, since 
most fiber structures are unusually sensitive to 
chemical disturbance [for example, microtubules 
(Luduefia, 1979)] or have surfaces with a specific 
protective function (as in viruses) and so are very 
resistant to modification. Furthermore, location of 
heavy atoms in a helical structure presents special 
difficulties (Holmes, Mandelkow & Barrington Leigh, 
1972; Holmes et al., 1975). Any method such as the 
one presented here which increases the information 
available from each derivative will greatly extend the 
resolution attainable in structural studies using fiber 
diffraction. 

This work was supported by NIH grants GM25236, 
CA24407 and CA29522, and by an Alfred P. Sloan 
Foundation Fellowship to LM. 
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Abstract 

The problem of dynamical Bragg diffraction from a set 
of Bragg planes in a material circular in the diffraction 
plane is solved by a combination of a Riemann-function 
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technique and numerical integration of the Takagi- 
Taupin equations. In regions affected by non-Laue 
surfaces the solution is compared with an approximate 
Green-function method based on truncation of small 
arcs of the circle. The bright-field and dark-field 
intensity profiles are determined only by the radius of 
the circle compared to the extinction distance, and on 
the absorption parameters. The dependence of the 
profiles on these parameters is studied. 
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